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One of our most versatile materials.

Important for industrial applications: 
Dual Phase steel (e.g. DP800)
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Why Steel?
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Hot Rolling HT HTCold Rolling … Deep Drawing/Bending



IcK

Better Materials 
Better Processes

Damage Mechanisms

Damage in DP Steels
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Traditional Approach

Image ProcessingDeformation

Void detection

300 µm

30 µm

Panoramic Imaging

3 µm

N.B. 2 orders of magnitude

electron microscope 
imaging

apply stress on 
material sample

manual image 
analysis

Damage localization
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Traditional Approach

Image ProcessingDeformation

Void detection

300 µm

30 µm

Panoramic Imaging

3 µm

N.B. 2 orders of magnitude

• Detailed understanding of individual damage sites & mechanisms
• Manual approach does not allow statistical analysis

→ Automate image analysis with Deep Learning

electron microscope 
imaging

apply stress on 
material sample

manual image 
analysis

Damage localization



6

Key Steps in Automated  Damage Analysis

Automated damage
localization

Obtain high-res
panoramic image

Statistical 
Analysis

Deep learning:
Damage ID

~10,000 images
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Heterogeneous at 
< μm – mm scale

↓
High resolution

+ large area

• 3,56 

mm

• 20m

• 5 m

• Ferrite

• Martensite

Challenge I: Many Damage Sites 

High-res panoramic image of a large sample space
→ Handle many images

• OK for PoC
• Setup data infrastructure for continued analysis (Image + Metadata)

(e.g., Mongo DB)



8

Hoefnagels, J.P.M., et al. (2015)  || J Mater Sci 50(21) 6882
Azuma, M. (2013) PhD thesis, TU Denmark || Heibel, S. et al. (2018) Materials 11, 761 
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Challenge II: Semantic Classes

Supervised learning: Require labelled images – definition of semantic classes?

Step 1: Relevant Literature
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Challenge II: Semantic Classes

Supervised learning: Require labelled images – definition of semantic classes?

Step 1: Relevant Literature

Step 2: Revise & Clarify Class Definitions
• Class definitions suitable for “clear cut” cases

(what is normally looked at)
• Many “in-between” cases

• Important for statistical analysis
• Consolidate class labels with multiple experts
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3 µm

Kusche et al. (2019) PloS one 14 (5), e0216493

Panoramic imaging 
→ big data

Challenge II: Semantic Classes
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Kusche et al. (2019) PloS one 14 (5), e0216493

In-Situ Tracking: From Nucleation to Evolution
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Verification

Compare Deep learning results with manual expert verification

N.B.:
large scale  
verification
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S. Medghalchi, C. Kusche, E. Karimi, U. Kerzel, S. Korte-Kerzel (2020), Damage Analysis in Dual Phase Steel Using Deep Learning: Transfer from Uniaxial to Biaxial 
Straining Conditions by Image Data Augmentation, JOM (2020). DOI 10.1007/s11837-020-04404-0

Challenge III: Image Artefacts

Imaging artifacts increase mis-classification
• In particular: shadows of e-beam on 3D sample structure
• Extend semantic classes: add artefact “SH” (shadow) as class

• Significant increase in performance
• So far: major artefact – but monitor for new preparations

Data doesn’t speak for itself!
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Challenge IV: Image Labelling

Augmentations:
(a) original image, (b) random rotation, (c) random pixel dropout, (d) Gaussian blur, and (e) random shear.

S. Medghalchi, C. Kusche, E. Karimi, U. Kerzel, S. Korte-Kerzel (2020), Damage Analysis in Dual Phase Steel Using Deep Learning: Transfer from Uniaxial to Biaxial 
Straining Conditions by Image Data Augmentation, JOM (2020). DOI 10.1007/s11837-020-04404-0

Supervised Learning:
• Requires labelled images representative of sample for inference.
• Costly to obtain: Manual work by experts
• Challenge for generalizability – example: uniaxial to biaxial stress
• Approach: image augmentation

• Rotation, pixel dropout, blur, shear
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Road Ahead: Data Handling

Beyond PoC: Organize data systematically

Store data (images) and metadata:
• Date, time, location, sample ID
• Experimental conditions of imaging equipment

• Microscope settings, 
• beam acceleration, 
• ….

• Sample details
• Details about the sample, manufacturing 

process, …
• Preparation prior to imaging (etching, ….)
• …

• Image relationship
• Original image as recorded
• Image after enhancement
• Stitched panorama
• Identified image location (incl. location details)
• …

• ….

No community-wide infrastructure 
available.

mongoDB seems promising 
candidate:
• Mature technology
• Open source 
• Community to enterprise option
• Cloud scaling to planetary scale 

possible
• Connectors 
• PyMongo for Python access 
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Road Ahead: Beyond Supervised Learning

Supervised learning is the greatest thing (after sliced bread):

• Machine learning algorithm learns desired mapping:
labelled images to label

• Semantic classes well defined:
• Hand-crafted and verified by experts in the field
• Artifacts can be included in well defined way

• Data doesn’t speak for itself:
• Verify semantic classes
• Include expert knowledge in image labels

…. But: Doesn’t scale
• New data need to be labelled manually
• Data labelling doesn’t get much faster with time
• Additional people: expert training required.

→ explore further options:
Deep clustering, self-supervised, semi-supervised,  
semi-self supervised, contrastive learning, …
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Potential Avenue: Clustering

Representation Learning + Clustering
1. Use deep convolutional neural networks (CNN) to extract image 

features
2. Use clustering (e.g. k-means) to group images into classes

• Little to no labelled data required

• CNN are not explainable –
decision boundaries do not match well with expert analysis

• High and hard to control risk to learn artefacts instead of 
semantic classes.

• Number of clusters: free parameter

Examples:
• Deep Adaptive Clustering (J. Chang et al, ICCV 2017)
• DeepCluster (M. Caron et al., ECCV 2018, arXiv: 1807.05520)
• DeeperCluster (M. Caron et al. ICCV 2019, arXiv: 1905.01278)
• Deep Image Clustering With Spatial Transformer (Th. V. M. Souza et al., ICANN 2019, arXiv: 1902.05401)
• ClusterFit (X. Yan et al., IEEE/CVF CV 2020, arXiv: 1912.03330)
• SCAN (W. v. Gansbeke et al, ECCV 2020, arXiv: 2005.12320)
• Self-labelling via simultaneous clustering and representation learning (Y. Asano et al, ICLR 2020, arxiv: 1911.05371)

• In materials science:  R. Cohn & E. Holms (2020), arXiv: 2007.08361)
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Potential Avenue: Semi- / Self- Supervised Learning

Intuition: Reduce dependency on labelled images
Split training into two steps:

• Pre-train network with a suitable “pretext” task
• Fine-tune network with labelled images on actual task.

Idea:
• Pretext task is something humans could do – but 

computers can do without human input
• Pretext learns general representations

• Need much fewer labelled images once pretext task is 
trained
• Downstream learns specifics for the actual task.

Challenges:
• Define a suitable pre-text for electron microscope 

imaging
• Typically: colorization, position in image, fill a gap,…
• Material science…?

• Networks at high risk to learn artefacts in pretext task
• Scratches, blurs, watermarks, aberrations, …

(M. Minderer et al. “Automatic shortcut removal for self-supervised 
representation learning.” PMLR, 2020, arXiv:2002.08822)
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Potential Avenue: Semi- / Self- Supervised Learning

Key Insights: 
(A Critical Analysis of Self-Supervision, or what we can learn from a single image,  Y. Asano et at., ICLR 2020)

• “First, we show that as little as a single image is sufficient, when combined with self-supervision and 
data augmentation, to learn the first few layers of standard deep networks as well as using millions 
of images and full supervision “

• Deeper layers: “For these, self-supervision remains inferior to strong supervision even if millions of 
images are used for training. Our finding is that this is unlikely to change with the addition of more 
data.”

Possible Avenues:
• X. Zhai, et al. “S4l: Self-supervised semi-supervised learning.” IEEE/CVF 2019, arXiv: 1905.03670
• J. Grill, et al. “Bootstrap your own latent: A new approach to self-supervised learning.” arXiv: 2006.07733
• K. Sohn et al. “FixMatch: Simplifying Semi-Supervised Learning […]” NeurIPS 2020, arxiv: 2001.07685

Variant: Contrastive Learning: Maximize similarity / difference in image pairs
• SimCLR: T. Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations” ICML 2020, 

arXiv: 2002.05709
• MoCo: K. He et al. “Momentum Contrast for Unsupervised Visual Representation Learning” CVPR 2020, 

arXiv: 1911.05722
• PIRL: I. Misra et al. “Self-Supervised Learning of Pretext-Invariant Representations” IEEE/CVF 2020, 

arXiv: 1912.01991
• A. Oord et al. “Representation Learning with Contrastive Predictive Coding” arXiv: 1807.03748
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Summary
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Deep Learning opens the door to statistical analysis in Materials Science

• Large scale damage identification with high accuracy
• Enables analysis of statistical effects & damage evolution under strain.

Significant challenges remain:
• Damage class definitions –

underlying dominant mechanism of damage evolution
• Data handling and metadata
• Supervised learning most accurate and unlikely to be (fully) replacable

• Large scale image labelling prohibitively costly
• Many potential avenues to pursue:

• representation learning + clustering, semi/self-supervised learning, 
contrastive learning,…

• As of now: unclear which path most promising for damage analysis

Exciting opportunity for materials science to enter the age of 
large scale statistical analysis.

Kusche et al. (2019) PloS one 14 (5), e0216493
S. Medghalchi et al. JOM (2020). DOI 10.1007/s11837-020-04404-0 


